If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+23t+4=8
We move all terms to the left:
-16t^2+23t+4-(8)=0
We add all the numbers together, and all the variables
-16t^2+23t-4=0
a = -16; b = 23; c = -4;
Δ = b2-4ac
Δ = 232-4·(-16)·(-4)
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{273}}{2*-16}=\frac{-23-\sqrt{273}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{273}}{2*-16}=\frac{-23+\sqrt{273}}{-32} $
| 5p+2p-6p-1=19 | | -16t^2+23t+4=12 | | 14d-6d=8 | | 6w-2w-w-2w=17 | | 2x-(3-5x)=4x(4x+3) | | 4^x+3=12 | | k−(−5/6)=-1/6 | | -4q+3q+-5q=12 | | 18g-15g-3g+3g-g=4 | | 3v-3v+2v+v-v=16 | | -6x-6+5x=-81 | | -1/2v+1/5=-1/3 | | 12m+-2m-10m+18m=-18 | | -3/7=-9/4v-3/2 | | 12m+-2m-10m+18m=18m | | 7w-6w=16 | | 11c-5c=6 | | k^2=-5-6k | | -0.25(4d-8)=0.5(4-2d) | | 267=154-x | | 2v-9=-19 | | 2x+15=1x+4x+5 | | 2b-2b+6b-5b+3=31 | | 37k+29k-23k+2=-41 | | 42k-23k-19=38 | | 17y-15y+y-2y+10y=11 | | 3v-2v+2v-v-v=49 | | y-y+y+y-2=16 | | 13d-9d+4d-5d-2d+1=19 | | 13y-8y-4y+y=12 | | 10d-37d+26d-6d+4=18 | | 45y-30y-10=50 |